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ANTHROPOCENE:
THE HUMAN
EPOCH

Societal development and environmental
degradation dynamics in a finite world
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B But socio-economic progress was made at a cost

1950-2020
Socio-economic trends evolution Earth system trends
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Dlstrlbutlon of mammals on Earth

Mammal biomass is shown for the

Wild mammals
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Key takeaways

Socio-economic progress is very and has been
made
Humans have become a in Earth’s

geology and ecosystems changes

This occurred using of human's bodies,
largely based on

Human societies are like a |
consuming natural resources and producing waste

The ecological footprint of human societies have

So...

How severe is it?



ECOLOGICAL
OVERSHOOT

An insight into the vital signs of planet Earth

“l am here to sound the alarm: The world must wake up. We are on the
edge of an abyss — and moving in the wrong direction.”
Antonio Guterres, UN Secretery-General




A Temperature (°C)

Humanity’s Journey on Earth
Human Population Size and Global Temperature from 500,000 Years BP Until 2100
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3 Planetary boundaries... 7 of 9 have been breached

Planetary Boundary High-Risk Line Status & Trend
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B A 6th mass extinction has started

@ Current global extinction risk in different species groups
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B Mechanism of warming and its contributors

Stable climate: in balance Today: imbalanced
Incoming Incoming
solar energy solar energy
Outgoing Less outgoing
energy energy due to
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B The social shortfall and ecological overshoot of nations
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GROWTH IN THE WORLD SYSTEM
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Key takeaways

, indicating an
ongoing , suggesting a

The of life is ongoing
Climate change already has
Warming and extreme weather events will

This will have multiple consequences on human and
ecosystems health, infrastructures, crop yield...

Fossil fuels supply, the blood of our modern societies (84%
dependent), will

Our . We must rapidly
end our overshoot situation to

So...

What must be done?



TRANSFORMATION
PATHWAYS

Towards a good life for all within planetary boundaries?

“What we do between 2020 and 2030 will be the decisive decade for
humanity's future on earth”

Professor Johan Rockstrom, PID Director




Global greenhouse gas emissions by sector giee
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Key milestones in pathway to net zero

2030
* Universal energy access

zero-carbon-ready
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Carbon inequality between socio-economic groups

Share of global Share of total emissions Share of cumulative Share of global carbon
population growth 1990-2015 emissions 1990-2015 budget for 1.5C
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Key takeaways

GHG emissions must rapidly decline and ] to
limit warming to 1.5-2°C, but they keep increasing.

This can be done by

(decarbonization, efficiency, sufficiency)

GHG emissions mainly come from the

A transition is required combined
with a widespread of end uses

Although they made outstanding progress, low carbon technologies will
need to be déployed at to meet climate targets

There are severe and those with the lowest

responsibility tend to be the most vulnerable to climate change, leading to

The
countries mainly due to increase in consumption (GDP)

Climate mitigation present some with other environmental
pressures, but

So...

Why aren't we on track?



ROOT CAUSES OF
OUR INADEQUATE
RESPONSES

Cultural, political and economic brakes to
transformational change

“If the only tool you have is a hammer, you tend to see every problem as
a nail”

Abraham Maslow, psychologist

“Anyone who thinks that you can have infinite growth in a finite
environment is either a madman or an economist”

Kenneth Boulding, founding father of ecological economics




Economy

Weak sustainability
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Weak sustainability/ modernity paradigm

Status quo

Technological fix with minor or no changes
to lifestyle choices

Prioritise economic issues; deal with
environmental issues as needed

Technical progress and optimism

Perfect substitution of natural and
manmade capital

Manage business risk within existing
free-market system

Source: adapted from Ehrenfeld (2000).

Source: Stockholm Resilience Center

B This leads to differentiated sustainability strategies

Strong sustainability

Strong sustainability/ sustainability paradigm

Transformation

Fundamental reassessment of values and lifestyle
choices

Integrated, holistic approach to three dimensions

Technological scepticism and precautionary
principle

Limited substitution of natural and manmade
capital

Transform market system
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Key takeaways

* Therole of in addressing environmental problems:

The

Has presently been limited by and by
driven by consumerist mindset

Slowed by past choices that have created
Is generally overstated:

has been constructed to fulfill the
of a capitalist economy

on environmental problems:

The has perpetrated |
to delay climate action, leading to
has been highly both in terms of time

dedicated and way of depicting the issue

of the role of the environment in
led to inadequate tools and

sustainability strategies

enable the derivation

of new tools for guiding human development

So...

What else can go wrong?



CHALLENGES e
ALONG THE WAY

Global systemic risks on the road to net zero
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5. Challenges along the way

Key takeaways So...

Modern societies are facing risks caused by the high level of
interconnection between different sectors on a global scale
and by the consequences of human activities on the
environment

These so-called systemic risks can be economic, geopolitical,
environmental, societal and technological

They can slow or hinder the transformation of our society
towards sustainability

What about the space sector?

In particular, raw materials fluxes may become a key limiting
factor for the energy transition, while global finance may be a
significant destabilizer

Fragile states are also the most vulnerable to climate change,
whi%h is an amplifier of tensions potentially leading to armed
conflicts



WILL WE CONTINUE
SPACE ACTIVITIES?

The future of the space sector in the Anthropocene

“Earth is the cradle of humanity, but one cannot live in a cradle forever”
Konstantin Tsiolkovsky

“One day, Mars will save Earth. | am certain of it.”
Elon Musk, CEO of SpaceX

“This discussion leads us to the inevitable conclusion that we are bound to

the Earth for the next 100,000 years. [...]”
Roger-Maurice Bonnet, former ESA scientific director




A new paradigm enabling the development of new space activities

and
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threat' to astronomy
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The pollution caused by rocket launches
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How the billionaire space race could be
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Science Focus

Are space launches bad for the
environment?

Space rockets may not be very environmentally friendly.






J Pollution of the orbital environment: déja vu?

Orbital environment trend

(space debris growth) Earth system trends
(environmental stressors)
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B The French space sector’s carbon footprint

Répartition de
U'empreinte
carbone de la
filiere spatiale
francaise

Source : Carbone 4
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= The impacts of rocket launches on the atmosphere

Particles accumulate in the stratosphere and warm it

Soots/Black

‘ 50km

carborn = Alumin
|F 3 U QI

L
\

Atmospheric circulation change

Source: Miraux (2021) adapted from Ross & Vedda (2018), Ryan et al. (2022), Maloney et al. (2022)

15km

Accumulation in the

stratosphere

Residence time:
Troposphere : a few days
Stratosphere : 3-5 years

Rocket soots 500x more
efficient at warming than
other sources of soots

Warming of the
stratosphere

7

Complex changes
resulting in areas of
warming and of cooling
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= The impacts of rocket launches on the atmosphere

Propellant mass burnt grows fast and is dominated by large particles emitters
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B The effect of re-entry emissions remains unknown

Mesosphere

Stratosphere

Troposphere

ablation

Incorporation of Metals from Reentry into Stratospheric Particles
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900 tons of spacecraft material re-entering per year

l Demise

350 tons of particles injected in the mesosphere

l Migration time to stratosphere ~30y ?

Source: Shultz & Glassmeier (2021), Miraux et al. (2022), Murphy et al. (2023), Ferreira et al. (2024)

10% of aerosol particles in the stratosphere

contain metal originating from spacecraft re-entry

Ice nucleation, polar stratospheric clouds,
catalysis of ozone-destroying reactions

Effects on climate? Ozone? Unknown!

Depending on constellation deployment scenarios:
More satellites with smaller lifetimes (~5y)
10 kt/yr re-entering; 4kt injected, aluminum injection 15x natural level

‘High’ Starlink only scenario: 45,000 V2&3 ; full reusability = 10 kt/yr re-entering 110



A f'j,,How many satellltes at any tlme‘?
PARANAL EQUINOX = nengeess e G Starlink Gent &2 + OneWeb ‘

Observatory latitude: -25.0? o 'h":“"“”a:'fig‘;‘gﬂ
ag < b [
Sun: HA= 88.5° 6= 0.0° e

sun elevation= 1.4° Mag <5 B9 ' ) ; 4 ’; / Above hOI’lZOn ¥
Local Time: 17:53:00 : AT re 2at ,:_ 2 N_IOO today ';, 3 o :
a7 ~2000then ot
0 'Above 30°
—4000  —2000 0 2000 4000 90 70 50 30 S ot
E—Whgkm] Elevation [deg] " o o . N'I 0 today
-4000 , e e
e ~200 then
. 7’5‘f'}-j,aV|S|bIe with naked eye
23 today
5 50 then B

Number of satellites
Magnitude

Alt [km]

—2000

0

5
Satellite illuminated 01000
Alt [km]

e — IS ;':ﬁ;.'Starllnk Gen1&2 + OneWeb + Kumer + GuoWaan
L | o o el In worst case situation,

! | ]

-ze. ] | ' = Satellites will not outhumber visible
stars... but their number will soar!




Starlink’s mitigation attempts: a mixed outcome

Operations: change of attitude during ascent =» 10x fainter during this phase

VisorSat: Sun visors to hide solar panels or antennas ; 15t generation dielectric
mirrors; Darker solar arrays
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Source: O. Hainaut, SpaceX, Mallama et al. (2023)



B Causal relationships in the Earth-space sustainability system
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6. Will we continue space activities?
6.1 The environmental footprint of space activities

Key takeaways

The space sector is a new frontier for environmental science,
featuring unique impacts that can involve highly complex physics.

Although space debris has been long identified as a threat, the
number of debris will continue to grow even if we stop launching.

Light (optical and radio) pollution from satellites pose a serious threat
to astronomy and its impacts are not fully understood yet.

The impacts of the space industry on climate and ozone are
dominated by launchers because of their emissions — mainly particles
— in the upper atmosphere. Re-entry may also be an issue. Both are
not well understood yet, especially re-entry.

These impacts are interacting and miti?ation attempts will face
complex trade-offs. They must be tackled using systems thinking.

The impacts of the industry can rapidly become concerning as it
grows very fast. The environmental costs of large-scale projects
requiring high launch rates likely exceed by far their benefits.

So...

What can we do about it?



Towards additional and more intense ecological

- impacts... for which societal benefits?

‘Historical’ space | New activities and promises

Large Space-based solar Earth-to-Earth Mars

constellations of power transportation colonisation
satellites Clean energy to help meet Everywhere on Earth Planet B!
Global broadband our climate targets! in under an hour!

connectivity for all!

Space tourism Asteroid mining Space cities
Space is for all Unlimited Planet B!
humanity! resources!

Narratives and promises that should be questioned given what we know now!
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6. Will we continue space activities?
6.2 What space activities in the Anthropocene?

Key takeaways So...

The space sector is not one single entity. Space activities have many
different objectives and provide various services to society. Their
motivation may also often be driven by complex and intricated issues
of geopolitics, economics, sovereignty, and ideology. Any critical
analysis should account for that.

Earth observation from space has been essential for environmental
science and policy and will continue to be.

Modern society is strongly dependent on many services provided by What do you think?
satellites, but their development must be questioned, and

telecommunications in particular since it will likely be the one

generating the most impacts in the near future.

Space tourism exacerbates environmental inequalities due to an
un?aralle_led combination of economic inaccessibility and
outstandingly high environmental footprints per passenger.

Projects aiming at increasing the carrying.capaqity of humans with
space resourcées/habitat are dangerous distractions with high
ecological costs.

The space sector is vulnerable and its development will be
undermined by global socio-environmental crises.



